A critical amino acid residue, asp446, in UDP-glucuronosyltransferase.
نویسندگان
چکیده
An amino acid residue, Asp446, was found to be essential for the enzymic activity of UDP-glucuronosyltransferase (UGT). We obtained a rat phenol UGT (UGT1*06) cDNA (named Ysh) from male rat liver by reverse-transcription (RT)-PCR using pfu polymerase. A mutant Ysh having two different bases, A1337G and G1384A (named Ysh A1337GC1384A), that result in two amino acid substitutions, D446G and V462M, was obtained by RT-PCR using Taq polymerase. Ysh was expressed functionally in microsomes of Saccharomyces cerevisiae strain AH22. However, the expressed protein from YshA1337GG1384A had no transferase activity. Two other mutant cDNAs with YshA1337G having one changed base, A1337G, resulting in one amino acid substitution, D446G, and YshG1384A having a changed base, G1384A, resulting in an amino acid substitution, V462M, were constructed and expressed in the yeast. The expressed protein from YshG1384A (named YshV462M) exhibited enzymic activity, but the one from YshA1337G (named YshD446G) did not show any activity at all. Asp446 was conserved in all UGTs and UDP-galactose:ceramide galactosyltransferases reported, suggesting that Asp446 plays a critical role in each enzyme.
منابع مشابه
Amino acid residue ILE211 is essential for the enzymatic activity of human UDP-glucuronosyltransferase 1A10 (UGT1A10).
Conjugation of exogenous and endogenous compounds by uridine diphosphoglucuronosyltransferases (UGTs) is a pathway catalyzing the transfer of a glucuronic acid molecule from UDP glucuronic acid to lipophilic aglycones, which become more polar and more easily excretable in the bile or urine. UGTs are divided into two major families, UGT1 and UGT2. The isoform UGT1A10, along with UGT1A7 and UGT1A...
متن کاملThe first aspartic acid of the DQxD motif for human UDP-glucuronosyltransferase 1A10 interacts with UDP-glucuronic acid during catalysis.
All UDP-glucuronosyltransferase enzymes (UGTs) share a common cofactor, UDP-glucuronic acid (UDP-GlcUA). The binding site for UDP-GlcUA is localized to the C-terminal domain of UGTs on the basis of amino acid sequence homology analysis and crystal structures of glycosyltransferases, including the C-terminal domain of human UGT2B7. We hypothesized that the (393)DQMDNAK(399) region of human UGT1A...
متن کاملBiosynthesis of hydroxyl-linked glucuronides of short-chain bile acids by rat liver 3-hydroxysteroid UDP-glucuronosyltransferase.
Microsomal preparations from livers of Sprague-Dawley rats catalyze the glucuronidation of 3 alpha-hydroxy-5 beta-H (3 alpha, 5 beta) short-chain bile acids (C20-C23), predominantly at the hydroxyl group, while the glucuronidation of 3 beta, 5 beta short-chain bile acids occurs exclusively at the carboxyl group. A similar pattern of conjugation was also observed in Wistar rats having normal lev...
متن کاملCatalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.
The plant UDP-dependent glucosyltransferase (UGT) BpUGT94B1 catalyzes the synthesis of a glucuronosylated cyanidin-derived flavonoid in red daisy (Bellis perennis). The functional properties of BpUGT94B1 were investigated using protein modeling, site-directed mutagenesis, and analysis of the substrate specificity of isolated wild-type and mutated forms of BpUGT94B1. A single unique arginine res...
متن کاملKey amino acid residues responsible for the differences in substrate specificity of human UDP-glucuronosyltransferase (UGT)1A9 and UGT1A8.
Human UDP-glucuronosyltransferase (UGT)1A9 is one of the major isoforms in liver and extrahepatic tissues, catalyzing the glucuronidation of a variety of drugs, dietary constituents, steroids, fatty acids, and bile acids. UGT1A9 shows high amino acid homology with UGT1A7, UGT1A8, and UGT1A10 with overlapping substrate specificity. However, the affinities for substrates are different among them....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 325 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1997